The world
of the infinitely small

FOCUS ON ...

Team Bacteria, Antibiotics, and Immunity

Respiratory tract infections represent the third major cause of death worldwide. Among them, bacterial pneumonia (either community- or hospital-acquired) are major causes of morbidity, quality-adjusted life year loss, and mortality in children, adults, and the elderly. Although the discovery of antibiotics to treat bacterial pneumonia was a remarkable achievement in the 20th century, the effectiveness of antibiotics is declining, because of antimicrobial resistance (AMR). The World Health Organization (WHO) estimates that bacterial infections due to AMR will outcompete any cause of death by 2050, meaning that it is crucial to develop new strategies to improve antibacterial treatment.

The team "Bacteria, Antibiotics, and Immunity" studies pathogenic bacteria responsible for pneumonia listed by the WHO as priority targets in the fight against AMR: Streptococcus pneumoniae and Klebsiella pneumoniae. Our studies make use of cell and animal models as well as clinical studies with the GHICL hospitals in Lille to translate findings from bench to bedside. The team especially investigates the immune responses that are triggered by the bacterial infection of the respiratory tract, by the antibiotics during the treatment of such infections and aims to define groundbreaking interventions that increase innate immune defenses. Notably, innate immunity mobilizeq a variety of antibacterial effectors; Emergence of resistance to these immune effectors would be unlikely. The ultimate objective of the team is to combat the emergence of AMR by novel interventions that combine stimulation of innate immune responses and antibiotherapy.

The team currently explore three research axes:

  • Demonstrating the proof-of-concept of aerosol delivery of immune-modulator as an innovative pneumonia treatment
  • Defining the contribution of innate immune effectors in the effectiveness of antibiotic treatment of infections
  • Dissecting the mechanisms involved in the innate IL-17/IL-22 responses to develop immune-boosters of antibiotics

In conclusion, our studies tests and optimizes emerging concepts of immunotherapy of bacterial pneumonia in combination with the standard of care that are antibiotics in order to address the problem of AMR.

More information about the team : HERE

Demonstrate the proof of concept of aerosol delivery of immune-modulator
as an innovative
pneumonia treatment

 

The team coordinates the European project FAIR (https://fair-flagellin.eu) that aims at targeting the innate immune system as an underexploited area of drug discovery for infectious diseases. To this purpose, the FAIR project develops inhaled flagellin as an adjunct therapy in bacterial pneumonia. Flagellin is an agonist of the Toll-like receptor 5 that activates signaling in the respiratory epithelium and thus, protective innate defenses against pneumonia. It has already been shown that flagellin activates local or systemic innate immunity and enhances the therapeutic outcome of pneumonia caused by antibiotic susceptible or resistant S. pneumoniae and K. pneumoniae. We aim at dissecting the mode of action of flagellin during pneumonia treatment. The project also ambitions to setup a first-in-man phase I clinical trial.

Decipher the nature of innate immune effectors contributing to antibiotics efficacy during bacterial pneumonia

Antibiotics are uniquely considered as direct antimicrobial agents, and most efficacy evaluations are based on in vitro assays or immunosuppressed animals. Growing evidence suggests that antibioticsinteract with host innate immunity to provide potent indirect effects which enhance bacterial clearance and may result in more rapid and complete therapeutic effects. The team is characterizing the dynamics of myeloid cell differentiation and functions during the antibiotic treatment of bacterialinfection in mice, in order to identify novel immunomodulatory agents.

Dissect the innate IL-17/IL-22 responses to improve treatment of pneumonia and boost antibiotic effectiveness.

 

The innate lymphocytes that produce the cytokines IL-17 and IL-22 are essential to promote respiratory innate antimicrobial defenses and tissue repair. The team aims at understanding how these responses are induced in the respiratory tract during self-limiting bacterial pneumonia in order to develop innovative interventions.

Our new Post doc
Our new PhD students

Mara Baldry - Postdoctoral researcher Scientific manager of FAIR. Immune corelates of protection to inhaled flagellin as adjunct of antibiotics.

Charlotte Costa - PhD Student. Impact of immunotherapies on the treatment and emergence of antibiotic-resistant pneumonia.

Mélanie Mondemé - PhD Student. Dynamics of myeloid cells during antibiotherapy of pneumonia.

Xing Li - PhD Student. Innate response of human primary respiratory cells to infections and immune-modulators.

Yasmine Zeroual - PhD Student. Modeling of protective innate immunity by Omics analysis.


Titre du document Teams Previously Presented

RECENT SELECTED PUBLICATIONS

Persistence and dynamics of fluorescent Lactobacillus plantarum in the healthy versus inflamed gut
Salomé-Desnoulez S, Poiret S, Foligné B, Muharram G, Peucelle V, Lafont F & Daniel C
Gut microbes (2021)

SARS-CoV-2 infection in nonhuman primates alters the composition and functional activity of the gut microbiota.
Harry Sokol, Vanessa Contreras, Pauline Maisonnasse, Aurore Desmons, Benoit Delache, Valentin Sencio, Arnaud Machelart, Angela Brisebarre, Lydie Humbert, Lucie Deryuter, Emilie Gauliard, Severine Heumel, Dominique Rainteau, Nathalie Dereuddre-Bosquet, Elisabeth Menu, Raphael Ho Tsong Fang, Antonin Lamaziere, Loic Brot, Celine Wahl, Cyriane Oeuvray, Nathalie Rolhion, Sylvie Van Der Werf, Stéphanie Ferreira, Roger Le Grand & François Trottein

The UPR sensor IRE1α promotes dendritic cell responses to control Toxoplasmagondii infection
Anaïs F Poncet, Victor Bosteels, Eik Hoffmann, Sylia Chehade, Sofie Rennen, Ludovic Huot, Véronique Peucelle, Sandra Maréchal, Jamal Khalife, Nicolas Blanchard, Sophie Janssens, Sabrina Marion.
EMBO Rep (2021)

TgAP2IX-5 is a key transcriptional regulator of the asexual cell cycle division in Toxoplasma gondii.
Asma S. Khelifa, Cecilia Guillen Sanchez, Kevin M. Lesage, Ludovic Huot, Thomas Mouveaux, Pierre Pericard, Nicolas Barois, Helene Touzet, Guillemette Marot, Emmanuel Roger et Mathieu Gissot.
Nat Commun (2021)

Plasmodium yoelii Uses a TLR3-Dependent Pathway to Achieve Mammalian Host Parasitism
Keswani T, Delcroix-Genete D, Herbert F, Leleu I, Lambert C, Draheim M, Salome-Desnoulez S, Saliou JM, Cazenave PA, Silvie O, Roland J, Pied S. (2020)


Our Youtube chanel


Where are we with antiviral treatments against Covid-19?

Third episode in the series dedicated to researching Covid-19. This webinar is moderated by Marie Treibert, science popularizer on the La Boîte à curiosités channel. She questions Sandrine Belouzard, virologist and CNRS researcher, who answers all questions relating to antivirals in the treatment of Covid-19. What is the difference between a vaccine and an antiviral treatment? How does an antiviral work? Who will benefit from it? Do we favor therapeutic repositioning or research for a new drug? Through definitions, a press review and an interview, this webinar takes stock of the subject.


One year after the first cases of COVID-19, researchers of the Center for Infection & Immunity of Lille present the current knowledge on SARS-CoV-2 in the context of a series of conferences organized by the Lille Research Taskforce on COVID-19, in partnership with the Society of Sciences, Agriculture and Arts of Lille.


Researchs against Covid-19 at the Institut Pasteur in Lille.

Coronaviruses, specificities and prospects for treatment by Jean Dubuisson, director of the Center for Infection & Immunity of Lille

More than 60 diseases can be transmitted to humans by rats. Among them, Plague, believed to be a disease of the past, has never been eradicated ...


"While bats are not to blame for everything, they have played a role in the transmission of at least 11 viruses" ...

COVID-19: Jean Dubuisson tells us about ANTI-CoV, a project supported by the FRM