Apicomplexa Parasite Integrative Biology


Mathieu Gissot
CNRS research director

Mathieu's ORCID
Mathieu's Contact

Apicomplexa is a phylum consisting of unicellular, obligate, intracellular protozoan parasites, which includes various human pathogen species such as Plasmodium spp. (causative agents of malaria), Toxoplasma gondii (cause of toxoplasmosis) and Cryptosporidium spp. (cause of cryptosporidiosis). Apicomplexan parasites trigger disease associated with an uncontrollable expansion of parasite biomass resulting in inflammation and host cell destruction.Although, apicomplexan parasites usually present a sexual cycle within the definitive host, the pathogenesis of these parasites in humans results from the ongoing asexual replication cycles within the host’s cells. Persistence in the human host and dissemination to other hosts is dependent on the ability of these parasites to differentiate into forms that will invade specific cellular niches. Host response to infection is not only key to controlling the acute phase of these infections but also contributes to parasite differentiation into life-long persistent forms of these parasites associated with chronic pathologies. To overcome host responses, to disseminate and persist, parasites have thus developed strategies to modulate immune and metabolic host pathways.Therefore, the apicomplexan parasite ability to proliferate, differentiate and the ability of the host to respond to the infection are crucialto the pathogenesis of these parasites.

In the team, we aim to understand, in both Plasmodium and T. gondii, the molecular determinants controlling the ability of these parasites to (i) proliferate and (ii) persist in the host. Moreover, we investigate host responses to parasite infection. We also exploit the accumulated knowledge on the basic mechanisms that we described to identify new therapeutic targets and compounds that will expand the therapeutic arsenal to treat the debilitating diseases caused by these parasites.

Toxoplasma gondii is responsible for toxoplasmosis

A disease which can be fatal for the fetus of infected mothers and for immunocompromised patients. This parasite belongs to the Apicomplexa family which contains other parasites of medical importance such as Plasmodium (responsible for malaria) or Cryptosporidium (cryptosporidiosis). The pathogenicity of these parasites is based on their ability to divide in order to proliferate in the organism. They have therefore invented simplified division patterns in order to multiply efficiently and quickly while producing a large number of parasites. The mechanisms allowing the control and coordination of these modes of division are therefore essential to their ability to proliferate and therefore to the survival of these parasites in humans. We aim to expand our understanding on how these parasites are able to evolve flexible modes of division allowing them to proliferate in a large number of different organisms. We study the proteins that control and coordinate the division of these parasites, using T. gondii as a model Apicomplexa. We are particularly interested in transcription factors of the ApiAP2 family which coordinate specific expression profiles during the cell cycle. In addition, we also study the centrosome, which serves as a platform coordinating the cell cycle. These studies could lead us to better understand the mechanisms of division in this family of parasites in order to develop new molecules aiming at controlling their proliferation.

Project leader : Mathieu Gissot


Toxoplasma gondii effectors and modulation of the host immune responses

Despite being critical for the establishment of infection, the mechanisms governing exchanges between the parasite and its host remain poorly understood. Specifically, dense granule (GRA) proteins, which are released into the vacuolar space and host cytosol, act as key effectors that modulate the host cell immune defenses. These GRA proteins are also essential for the establishment of chronic toxoplasmosis, as they facilitate cyst formation in neurons. By employing reverse genetics, proteomics, live imaging, and high-resolution microscopy, our aim is to uncover and characterize novel secretory pathways that regulate parasite effector release and influence parasite virulence.
On the host side, we focus on how infection alters the immune response during both the acute and cerebral latent phases of the disease. In particular, we investigate how splenic dendritic cells respond to different parasite strains and how this affects antigen presentation and the development of long-term protective immunity. In the brain, we examine the impact of latent infection on immune cell signatures and how infection-induced chronic inflammation may alter neuronal function.

Project leader : Sabrina Marion


Plasmodium has an elaborate and fascinating life cycle aimed at adapting and surviving in different hosts and tissues.

It is transmitted back and forth between a vertebrate (intermediate host) and an Anopheles mosquito (definitive host), where a bottleneck phase is rapidly followed by a period of replication, leading to the generation of thousands of progenies. During its intraerythrocytic cell development, it undergoes closed mitosis for its replication. This process, called schizogony, involves asynchronous DNA replication events, results in the formation of a multinucleated cell (schizont), and is followed by budding and cytokinesis. As expected, the regulation of such a replicative cycle differs from that of the eukaryotic cell cycle. In our team, we have investigated the role of the PP1 phosphatase and its regulators in Plasmodium and T. gondii. In eukaryotes, Inhibitor 2 (I2) and SDS22, two regulatory subunits of PP1, are involved in key steps of cell division, in particular in mitotic entry, chromosome condensation and cytokinesis. Our previous work showed that although I2 and LRR1 (SDS22 homolog in Plasmodium) interact with and regulate PP1 in both Plasmodium and T. gondii, they exhibit specificities in structure and phosphorylation pattern, the latter being known to be involved in their regulation. These data strongly suggest that in these parasites both proteins form holoenzymes that may have functions different from those described in eukaryotes, especially during parasite replication. Using reverse genetics, our aim is to explore the biological functions of I2 and LRR1 and the importance of their phosho-regulation to unravel the contribution of these complexes in the regulation of parasite proliferation.

Project leader : Christine Pierrot


Discovery of new antimalarial molecules through molecular and functional characterization of phosphatases specific to Plasmodium falciparum

Plasmodium falciparum (Pf), the deadliest agent of malaria, has developed resistance to almost all chemotherapeutics. It is necessary to understand the biology of this parasite in order to develop new drugs. In Pf, extensive research has now been started to study the Pf kinome and to examine whether targeting kinases could represent an effective mean for the treatment of the infection. However, the study of Pf phosphatases is still under-investigated. Amino acid sequence comparative analyses of Pf and Plasmodium berghei (Pb), a rodent malaria species, revealed that several of them are Plasmodium specific. Among these phosphatases, three were also suggested to be essential for blood stage parasites development of Pf. The present project is focused on the molecular and functional characterization of one of them and on the validation of this specific phosphatase as a new potential target for malaria. The gene has been cloned, annotated and expressed as a recombinant protein and its phosphatase activity has been demonstrated in vitro. Functional characterization in vivo was explored by conditional gene knock-out studies as well as by generating knock-in parasite lines to follow their trafficking during the parasite lifecycle (in Pf and Pb). Finally, we solved in silico the 3D structure of catalytic site of this phosphatase by homology modelling and identified a new set of potential specific inhibitors. A first series of pharmacomodulations allowed us to discover 13 new hits with IC50 ≤ 100 nM, including 3 with IC50 ≤ 50 nM. Cytotoxicity studies showed low cell toxicity on human HFF (Human Foreskin Fibroblasts) and HepG2 (human hepatocytes) cells with a selectivity index >100. Currently we are pursuing the pharmacomodulation of these hits, the molecule-target interaction and the in vivo efficacy in an animal model of malaria. Our project is supported by Inserm Transfert and SATT Nord.

Project leader : El-Moukhtar Aliouat

Current Staff

ALIOUAT El Moukhtar
Professor- University of Lille
ORCID
Contact

BA Mahmoudou
PhD Student
Contact

DEWITTE Caroline
Engineer-Institut Pasteur de Lille
Contact

GISSOT Mathieu
Research Director - CNRS
ORCID
Contact
Learn more about Mathieu

MARION Sabrina
Assistant Professor - University of Lille
ORCID
Contact

MASCARAU Rémi
Post Doc
ORCID
Contact

MOUVEAUX Thomas
Engineer - CNRS
Contact

MUDIYAM Venkat
PhD Student
ORCID
Contact

NADER Peter
PhD student - University of Lille
Peter's contact
Learn more about Peter

PEUCELLE Véronigue 
Engineer - Institut Pasteur de Lille
Contact

PIERROT Christine
Researcher - Institut Pasteur de Lille
ORCID
Contact

REMIA Gaetan
PhD Student
Contact

ROGER Emmanuel
Assistant Professor - Univ Lille
ORCID
Contact

Marcin PEZINSKI  (2021-2023)
Grant: PTR 474-21 - Réseau international des Instituts Pasteur
Project: Functional analysis of novel centrosomal and basal body components of two human parasitic protozoa

Mohamed Amir KEZAI (2021-2022)
Grant: CPER-CTRL Région Hauts de France
Project: Impact of Toxoplasma-triggered neuro-inflammation and modulation of the kynurenine pathway on Tau pathology

Maika DEFFIEU (2014-2017)
Grant: FEDER, ANR
Project: T. gondii vesicular trafficking and host cell responses

Flavie COURJOL (2014-2017)
Grant: ANR JCJC ToxoVirFT 
Project: Role and composition of the Nuclear pore complex in T. gondii

Maanasa BHASKARAN (2021-2024)
Project: Elucidation of biological role of transcription factors in the regulation of cell cycle in Toxoplasma gondii
Supervisor: Mathieu Gissot

Lola GURGOGLIONE (2021-2024)
Project: Caractérisation du rôle de IRE1a, un inducteur clé de l’UPR, dans l’activation des réponses immunitaires innées contre Toxoplasma gondii
Supervisor: Sabrina Marion

Justine PETERS (2021-2024)
Project: Conception, synthèse et évaluation pharmacologique de composés antipaludiques ciblant une enzyme spécifique de Plasmodium
Supervisor: El Moukhtar Aliouat (co-supervision)

Claudianne LAINE (2020-2023)
Project: Caractérisation d'un nouvel interactant de PP1 appartenant au complexe protéasome 26S de Plasmodium
Supervisor: Christine Pierrot

Asma-Sarah KHELIFA (2018-2021)
Project: Understanding the role of transcription factors in regulating Toxoplasma gondii crucial cell cycle functions
Supervisor: Mathieu Gissot
Current position: Postdoctoral fellow, Molecular Immunology Group - Center of Immuno-Oncology, National Cancer Institute, Bethesda, USA

Mohamed Amir KEZAI (2018-2020)
Project: Interactions between astrocytes and T.gondii during chronic toxoplasmosis
Supervisor: Sabrina MARION (co-supervision)
Current position : Postdoctoral fellow, Department of Psychiatry and Neuroscience, Laval University, Canada

Thomas MOUVEAUX (2017-2020)
Project: Molecular characterization of new transcriptional regulators in T. gondii.
Supervisor: Mathieu GISSOT

Sylia CHEHADE (2017-2020)
Project: Characterization of the T. gondii Rab11A-dependent secretome and associated host responses
Supervisor: Sabrina MARION

Anaïs PONCET (2016-2019)
Project: Subversion of dendritic cell functions by T. gondii and impact on the protective immunity
Supervisor: Sabrina MARION

Cécilia N’GUESSAN (2016-2019)
Project: Caractérisation moléculaire et fonctionnelle d'une enzyme spécifique de Plasmodium falciparum comme cible anti-malarique potentielle
Supervisor: El Moukhtar ALIOUAT
Current position : Pharmacienne praticienne attachée, AP-HP, Paris

Bénédicte GNANGNON (2015-2019)
Project: Caractérisation moléculaire et fonctionnelle d’une kinase de Plasmodium falciparum: rôle dans la régulation de la Protéine Phosphatase de type 1 ?
Supervisor: Christine PIERROT

Kevin LESAGE (2014-2018)
Project: Caractérisation fonctionnelle et implication du facteur de transcription TgAP2X-5 dans la régulation des gènes de virulence chez Toxoplasma gondii
Supervisor: Mathieu GISSOT

Kannan VENUGOPAL (2013-2017)
Project: Role of the Clathrin Adaptor Complex AP1 and the small GTPase Rab11A in Anterograde Trafficking in Toxoplasma gondii
Supervisor: Sabrina MARION
Current Position: Post-doctoral Fellow, M. Marti laboratory, University of Glasgow, UK

Astrid LENNE (2013-2016)
Project: Caractérisation moléculaire et fonctionnelle de deux nouveaux partenaires potentiels de la Protéine Phosphatase de type 1 (PP1) chez Plasmodium falciparum.
Supervisor: Christine PIERROT
Current position: Postdoctoral fellow, CIIL, Research on Mycobacteria and Bordetella (RMB) Team, Lille

Audrey VANDOMME (2010-2014)
Project: Caractérisation fonctionnelle du PhosphoTyrosyl Phosphatase Activator chez Plasmodium falciparum : rôle dans la régulation de PP2A et de PP1.
Supervisor: Christine PIERROT