

Newsletter

2025 is the last year of the CIIL five-year contract, which was previously extended by one year following the COVID-19 crisis. We had a visit from the HCERES committee last November, and it was an opportunity to present the results of the activities of our teams as well as their projects for the next 5 years. We have just received the report of this evaluation which is very positive and it will help us to prepare the transition to 2026. In this issue, we continue the presentation of the researchers who are actively participating in the CIIL project. This time, they are Catherine Daniel, IPL researcher in the Cellular Microbiology & Physics of Infection team and Gabriela Certad, Professor at the Catholic Institute of Lille, who is developing her research program in the Ecology & Physiopathology of Intestinal Protozoa team. Also presented in this Newsletter are Nausicaa Gantois, IPL engineer, and Claire Montpellier, research engineer at the CNRS. This year, we have decided to also present portraits of PhD students (Amine Pochet, Julie Di Adamo and Quentin Vanpeene) as well as that of a technician, Nicolas Ampen-Guffroy, working in the technical service of the IBL building. In this issue, you will also find the «Quality of Life & Working Conditions» approach developed within the CIIL as well as a brief summary of our first “PhD Student Day”. I take this opportunity to wish you all an excellent year 2025.

Jean DUBUISSON

Table of contents

A word from the director	P2
Portraits of our scientists	P2
> Catherine Daniel Researcher, Institut Pasteur de Lille	
> Gabriela Certad Professor, Catholic University of Lille	
Portraits of our engineers	P4
> Claire Montpellier Research engineer, CNRS	
> Nausicaa Gantois Engineer, Institut Pasteur de Lille	
Portraits of our PhD students	P6
> Amine Pochet > Julie Di Adamo > Quentin Vanpeene	
Portrait of one of our technicians	P7
> Nicolas Ampen-Guffroy Technician, CNRS	
Life at the CIIL	P8
> Quality of Life & Working Conditions > First PhD student's day at CIIL > Visit HCERES committee	
News in brief	P10
> Award ceremony for the CNRS collective crystal medal > Women's café > CIIL general assembly	

Portraits of our scientists

Catherine Daniel
Researcher
Institut Pasteur de Lille

My career in research began with a voluntary internship at the Lille Cancer Research Institute in Dr. JC D'Halluin's team (a long time ago now!). I really enjoyed this internship and it strongly motivated me to do a thesis in the field of Microbiology, which has become the common thread running through all my research projects.

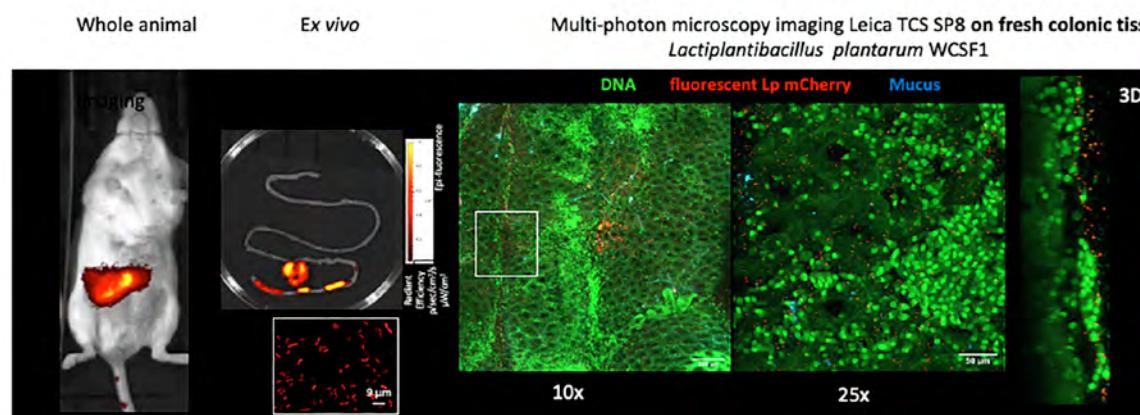
I did my thesis in Prof. R. Courcol's Bacteriology Laboratory at the Lille Regional and University Hospital on iron metabolism in a strict anaerobic opportunistic commensal bacterium *Bilophila wadsworthia* and an aerobic bacterium responsible for nosocomial infectious epidemics *Acinetobacter baumannii*. I then spent 3 years as a postdoctoral fellow at the University of Washington in Seattle, USA, in Prof. J. Leigh's laboratory, working on the transcriptional regulation of the nitrogen-fixation system of the strict anaerobic methanogenic archaea *Methanococcus maripaludis*. I then joined the Institut Pasteur de Lille in 2001 in Dr. A. Mercenier's laboratory as part of a European project with a research contract to work on commensal lactic acid bacteria of the digestive tract and their beneficial effects on host health.

I discovered lactic acid bacteria and mouse models with Prof. Wiedermann's team in Vienna in 2001, and I am still collaborating with this team today.

I also started working with Sabine Poiret in 2001, and we're still working together today. I'd like to thank her for her invaluable help with all my projects!

My research contract was extended in 2002 with a position as a researcher in the IPL-BLIM laboratory (Institut Pasteur de Lille, Bactéries Lactiques et Immunité des Muqueuses) headed by Prof. Bruno Pot. Some lactic acid bacteria have probiotic properties

(beneficial for the health of the host) and some are also used as vectors for the delivery of therapeutic molecules to mucous membranes.

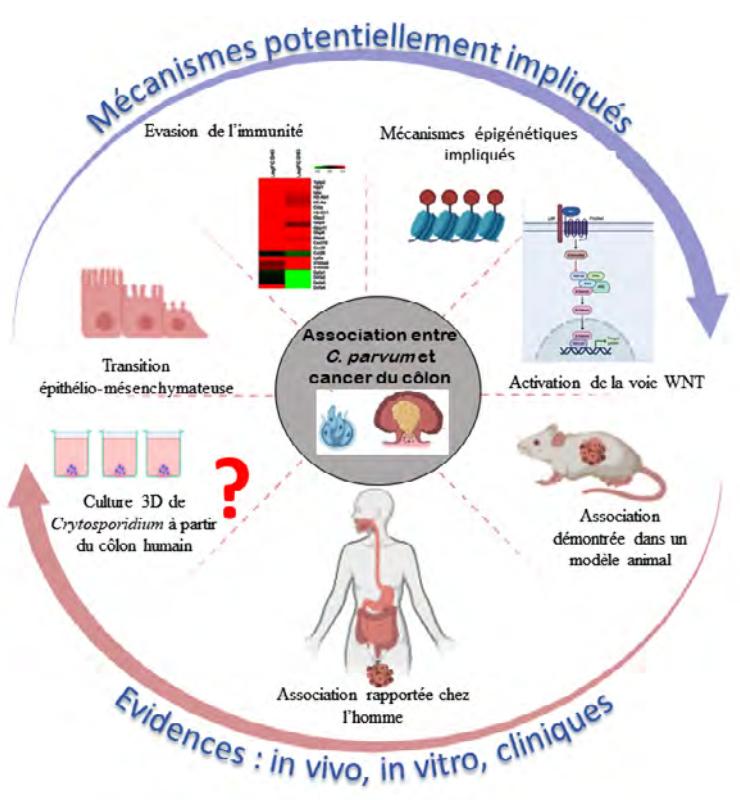

I have focused my research projects on the secretion of active molecules (cytokines, anti-inflammatory proteins) in the digestive tract by recombinant probiotic lactic acid bacteria. I evaluated the preventive and therapeutic properties of oral administration of these recombinant bacteria in mice in different experimental mouse models that mimic chronic inflammatory bowel diseases in humans. I have also shown that delivery of vaccine molecules (antigens and allergens) by nasally administered recombinant

lactic acid bacteria protects against infection and inflammation of the nasal mucosa and/or intestinal mucosa in experimental mouse models. More recently, I have developed new imaging approaches to study the persistence of bioluminescent and fluorescent probiotic bacterial strains in the intestine after oral administration.

From 2016 to 2020, I co-directed the scientific animation of the Centre d'Infection et d'Immunité de Lille with Sabrina Marion, which enabled me to gain a better understanding of the research topics of the CIIL teams and to form a close friendship with Sabrina.

Since 2020, I have joined Frank Lafont's laboratory to initiate a new theme on the ability of lactic acid bacteria to induce autophagy (a dynamic cellular process that allows the degradation of cellular components) in the intestine, which is defective during intestinal inflammation.

I first combined a non-invasive whole-body imaging technique with ex vivo confocal fluorescence microscopy to assess the impact of intestinal inflammation on the persistence of a commensal bacterial strain in the gut after oral administration. I then developed cellular models with the aim of selecting in vitro probiotic lactic acid bacteria that induce autophagy. The beneficial capacities of the strains selected in vitro are currently being evaluated in a healthy mouse model and an experimental colitis model, with the study of the specific induction of autophagy ex vivo and/or in vivo. From 2026, I'll be joining Alexandre Grassart's laboratory to pursue new adventures with gut bacteria "on a chip"! Finally, I'd like to thank all my colleagues, collaborators and students who took part in the various projects and without whom my research wouldn't be the same! I'd also like to thank my husband for sharing this research adventure with me from the very beginning, on the benches of the University of Lille!



A medical doctor by training, I have been a researcher at CIIL and head of the Cryptosporidium theme within the ECOPHIP team (Ecology and Physiopathology of Intestinal Protozoa headed by Dr Eric Viscogliosi) since 2010. I am also in charge of clinical research at the Délégation à la Recherche Clinique et à l'Innovation (DRCI) of the Groupement des Hôpitaux de l'Institut Catholique de Lille (GHICL), where I contribute my scientific and methodological expertise to clinical research projects.

During my university studies, I was gradually introduced to research, first as a medical student in Venezuela, my country of origin, then as a Master's student in Canada at the Institute of Parasitology of McGill University in Montreal, in the laboratory directed by Dr. Elias Georges. The aim of my Master's project was to study the molecular mechanisms involved in drug resistance in the Apicomplexa protozoan *Plasmodium falciparum*. After completing this Master's degree, I was appointed Associate Professor in the Parasitology Department of the Faculty of Medicine at the Central University of Venezuela in Caracas. Within this professional framework, I continued my Master's work by coordinating a medical research project on the epidemiological surveillance of *P. falciparum* resistance to anti-malarial drugs in the Venezuelan Amazon.

In the Department of Parasitology, my activities ranged from medical consultations specializing in intestinal parasites, to training medical students and researching the impact of parasitic infections on immunocompromised patients, in particular cryptosporidiosis. This infection is caused by the unicellular parasite *Cryptosporidium*, another Apicomplexa protozoan, which unlike *Plasmodium*, remains poorly understood and understudied, with few effective treatments available despite its major impact on public health.

An important meeting with Dr. Eduardo Dei-Cas, then a member of a delegation from the Institut Pasteur de Lille visiting Caracas, was a decisive turning point in my career. Thanks to a mobility grant from the Central University of Venezuela, which enabled me to leave my hospital post, I was able to complete a doctorate under his supervision (Equipe ECOPA, Institut Pasteur de Lille). My thesis, entitled "From the genetic and phenotypic characterization of *Cryptosporidium* to the identification of the role of *Cryptosporidium parvum* in the induction of digestive neoplasia", focused on the study of the genetic variability of human *Cryptosporidium* isolates collected in several countries (Venezuela, France, Haiti, Iran). In parallel, this thesis enabled the development of a reproducible mouse model of cryptosporidiosis, with the primary aim of providing an indispensable tool for in-depth study of this parasitosis. This model was developed using SCID (Severe Combined Immunodeficiency) mice on dexamethasone. However, this model unexpectedly revealed the involvement of *C. parvum* Iowa strain in a digestive neoplastic process, since

45 days after inoculation with this parasite, ileo-caecal neoplasia was observed in infected animals. A further study showed that a single oocyst of the Iowa strain was sufficient to cause chronic infection and neoplastic lesions in the stomach and ileocaecum of SCID mice 45 days after inoculation. Subsequently, three other more virulent strains (TUM1, Did and CHR) were isolated from humans or animals, inducing early neoplastic lesions, rapid progression to invasive adenocarcinoma and increased mortality in infected mice.

Portraits of our engineers

Claire Montpellier
Research Engineer
CNRS

My name is Claire Montpellier, and I am a Research Engineer at CNRS, a safety assistant, and an elected member of the laboratory council. I work in the Molecular and Cellular Virology team of Jean Dubuisson, within the group led by Laurence Cocquerel, which focuses on studying the hepatitis E virus (HEV).

After completing university studies in Biology, partly in Canada, I obtained a Master degree (DEA) in 1993 where I conducted my master's research at the Curie Institute in Paris in Bernard Dutrillaux's Cytogenetics laboratory. After my Master, I pursued a Doctorate in Human Genetics at the University of Paris VI under supervision of Jean Coll, initially in the team of Dominique Stéhelin and later on in the team of Claude Auriault. My thesis work "in vitro transformation of human T lymphocytes by the Epstein-Barr virus" was successfully completed in 1997.

In 1998 and 1999, I established a cytogenetics platform at the Institute of Biology in Lille, under the direction of Philippe Froguel and Marie-Françoise Croquette. In this role, I facilitated several collaborations with hospital and research teams, thereby providing them with my scientific expertise and technical skills in genetics, especially for the cytogenetic and molecular characterization of chromosomal rearrangements linked to severe growth deficiencies and mental retardation.

To enhance my knowledge and skills in virology, I conducted a post-doctorate between 2000 and 2002 in Jean Dubuisson's team before being recruited through a competitive process in late 2002. Under Jean's supervision, my experiments initially provided new insights into the glycosylation of hepatitis C virus (HCV) envelope glycoproteins, the characterization of the HCV membrane protein p7, and the function of the Sindbis virus 6K protein.

Since 2005, I have been working under the supervision of Laurence Cocquerel in Jean's team. I first worked on characterizing EWI-2wint, an inhibitor of HCV entry. Since 2015, I have been focusing on a new research theme in the laboratory related to HEV.

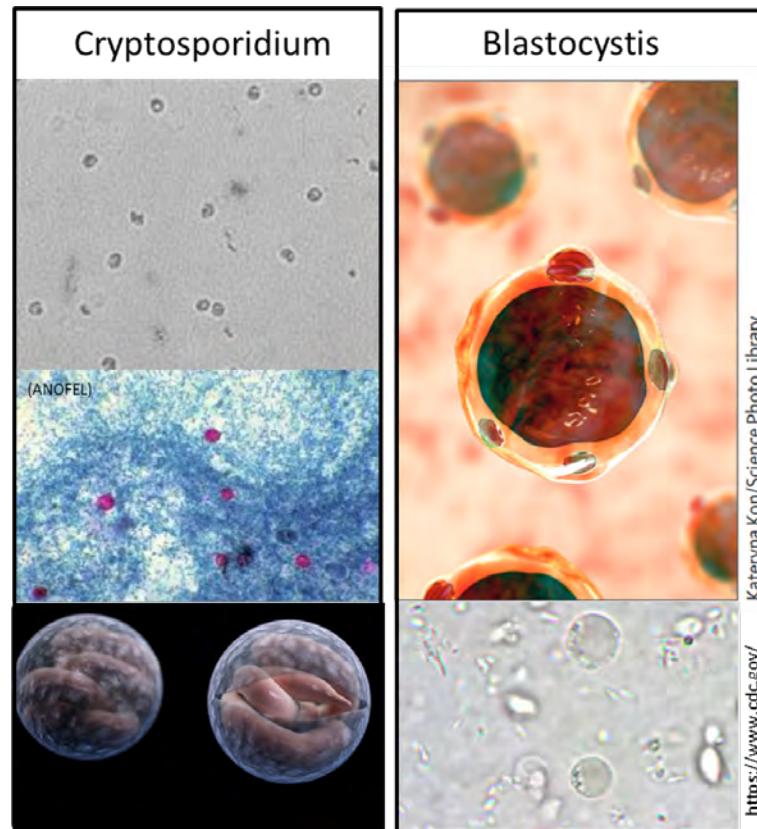
This virus is the leading cause of acute hepatitis worldwide, responsible for 20 million infections per year, including 3.3 million symptomatic cases, and causing around 70,000 deaths annually, particularly among pregnant women and immuno compromised individuals. To date, there is no licensed vaccine in France or specific treatment for HEV infection, which highlights the importance of understanding the viral life cycle to develop reliable and effective diagnostic and therapeutic tools. Unfortunately, progress in identifying the cellular and viral factors essential for HEV life cycle has been hindered for a long time by the difficulty of amplifying the virus in cell culture. To overcome this challenge, my first mission was to establish a culture system allowing the

production of high-titer infectious HEV. I then developed several protocols to purify and concentrate viral particles. We collaborated with research teams in France and abroad to visualize them using electron microscopy, demonstrating that our HEV viral particles were indeed infectious both *in vitro* and *in vivo*. All these new tools enabled us to show that, during its life cycle, HEV produces at least three forms of the ORF2 protein, the capsid protein. We showed that only one minor form, ORF2i, is associated with infectious particles. We then worked closely with the mass spectrometry platform at the Institut Pasteur de Lille (IPL) campus to study the glycosylation and maturation of these different forms. In cooperation with the company BIOTEM, I was responsible for selecting high-affinity antibodies specifically targeting the ORF2i protein associated with infectious particles. These highly specific antibodies were initially developed to help setting up new diagnostic tests for HEV. Moreover, they have been crucial in studying the maturation, trafficking, and assembly of HEV viral particles and have led to my involvement in three patents. No HEV-specific treatments exist today and ribavirin as well as pegylated alpha interferon are often used as therapies for chronic HEV infections. However, treatment failure is common and severe side effects arise. Taken together, this emphasizes the need to develop safe and effective antivirals to treat HEV patients. Globally, a large portion of the world's population does not have access to medication and therefore, about 80% of the world's population relies on plants for their healthcare. Hence the reason that as of 2023, together with Cécile-Marie Aliouat-Denis, we have focused on the activity of natural plant extracts on HEV replication. In collaboration with the Pharmacognosy Laboratory at the Faculty of Pharmacy in Lille, we initially screened Peruvian plants, halophyte plants from the Hauts-de-France region, as well as plants and natural compounds identified having hepatoprotective properties. The first results are very promising. Screenings were conducted on the ARIADNE platform at PLBS (on the IPL campus) by Audrey Tarricone. Doing so, we have identified about ten crude extracts and purified compounds, having an inhibitory activity on HEV replication. In the near future, we aim to test the efficacy of selected compounds in an infectious system, on other genotypes and in various experimental models.

Nausicaa Gantois
Engineer
Institut Pasteur de Lille

I'm Nausicaa Gantois, engineer at the Institut Pasteur Lille. I work in the ECOPHIP team, headed by Dr Eric Vis-cogliosi at the CIIL. The team focuses on the intestinal protozoa *Cryptosporidium* and *Blastocystis*, with major implications for public health.

My career path is rather atypical, as I never thought I'd have the chance to join a research team after my schooling: after a Bacca-lauréat STL in Biochemistry and Biology Engineering, I obtained a BTS in Biochemistry, followed by a DU in Pharmaceutical Sciences and Drug Sciences. At the time, I thought I'd find a job as a technician in agri-food, pharmaceuticals or a medical analysis laboratory, but life is full of surprises and encounters (Eduardo Dei Cas and Eric to name but two). That's how my DU diploma opened the doors to the Pasteur Institute in Lille, initially through a 9-month internship during which I studied the polymorphism of superoxide dismutases in legionella, then with a fixed-term contract and finally a permanent contract. As a technician in the Laboratory headed by Eduardo Dei-Cas, I worked on *Pneumocystis*, an opportunistic pulmonary micro-fungus. It wasn't long before I was also working on *Cryptosporidium*, a small but mighty protozoan! As time went by, I had the opportunity to learn many techniques, in cell culture, molecular biology and animal experimentation. To keep learning, it was in 2007, after 5 years of climbing the technician ladder and with two babies in my belly, that I decided I didn't have enough "mental load"... on top of my "belly" load! I then embarked on a new course of study to obtain a Bac + 5, with a diploma from the EPHE (École Pratique des Hautes Études). During the three years required to obtain my diploma, I studied the phenotypic and genotypic characterization of another opportunistic fungal pathogen, *Lomentospora prolificans* (ex *Scedosporium prolificans*). Phenotypic characterization was based on micro and macroscopic aspects, growth rate and susceptibility to antifungal agents, while genotypic characterization focused on ITS, beta-tubulin, MnSOD and Cu/ZnSOD genes. In 2012, the committee of the Institut Pasteur de Lille validated my change of position to study officer.


The changes in our team's management and its integration into the CIIL in 2010 have led me to provide technical and scientific support on various projects, as well as supervising and training numerous students.

We are currently studying the prevalence, virulence and impact of the intestinal protozoa *Blastocystis* and *Cryptosporidium* on human and animal intestinal microbiota. We carry out studies on a variety of animals in countries such as France, Egypt, Lebanon, Vietnam, Guinea and many others...

Our collaboration with GD biotech/Gènes Diffusion, for example, has enabled us to show that *Blastocystis* is an early indicator of productive longevity in dairy cows. This result is protected by a European patent (No. EP22212049.5), currently under PCT (No. WO 2024/121284 A1). Another ongoing project with GD biotech involves the study of *Cryptosporidium* in calves, and its impact on the animals' intestinal microbiota.

The CASABLAST project, carried out in collaboration with ANSES, Laboratoire de Ploufragan, is studying the circulation of *Blastocystis* in broiler chickens in France, with a particular focus on its co-occurrence with *Campylobacter* and *Salmonella*, agents responsible for bacterial gastroenteritis. The presence of these three microorganisms, alone or in co-infection, will shed light on their impact on the diversity and composition of chickens' intestinal microbiota.

A final example of a project I'm currently working on concerns human health risk assessment for seafood products. Our aim is to improve our knowledge of the sanitary quality of fish, mussels and oysters, and to clarify the potential human health risks associated with their consumption when colonized by *Blastocystis* and/or *Cryptosporidium*.

The projects I'm involved in are therefore very varied, and I'm really keen to pass on my experience and technique to young students of varying levels, having been part of the team's "memory" for over twenty years...

Portraits of our PhD students

Amine Pochet

PhD student

University of Lille

I'm Amine Pochet, a final-year PhD student working under the supervision of Arnaud Machelart in the "CGIM" team headed by

Dr. Priscille Brodin.

Since I was very young, my vocation has always been to care for my fellow man. With this in mind, at the very beginning of my higher education I decided to study medicine, taking the famous "Première Année Commune aux Etudes de Santé" (First Common Year of Health Studies). The reason I'm writing this today is that I didn't pass that first year, which in retrospect turned out to be for the best. I actually very quickly (2 weeks after starting) reoriented myself towards a bachelor's/master's degree course with the idea of doing a PhD in biology. So in 2018 I joined the University of Lille, still called Lille 1 at the time, where I undertook a Bachelor's degree in Cell Biology and Physiology. The end of my degree was marked by the SARS-CoV-2 pandemic, which prevented me from doing my first internship in a research laboratory.

After completing my bachelor's degree, without this first research experience, I still decided to continue in this course. The best option was to do a Master in Health Biology at the same university. During my Master 1, I had the opportunity to carry out my first internship, marking my arrival at the Lille Center for Infection and Immunity in 2021. I joined the "Lung Immunity" team, headed at the time by Anne Tsicopoulos. As part of this team, I studied the involvement of different cellular targets of IL-22 in a model of severe asthma induced by dog allergen. This first experience confirmed my desire to do a thesis at the center.

Wishing to continue studying lung-related pathologies, I joined the CGIM team in 2022, where I completed my Master 2 internship under the supervision of Arnaud Machelart. With him, I took and passed the thesis competition offered by the University of Lille, which enabled me to obtain funding (Inserm-Région Hdf). Since then, in collaboration with Ruxandra Gref from the Orsay Institute of Molecular Sciences, I have been studying the application of antibiotic nanovectors to combat tuberculosis. Although we have a treatment for this disease, it is associated with a number of disadvantages that significantly affect patients' lives. Among these disadvantages, anti-tuberculosis therapy is associated with many side-effects caused by the daily intake of medication, affecting patients' compliance with treatment and encouraging the development of resistance. This is why our team is interested in the use of nanovectors. In particular, these particles can be used to deliver antibiotics locally to the lung, thereby reducing the side-effects associated with taking them and improving their efficacy. It has already been

demonstrated that nanoparticles formed from beta-cyclodextrin polymers ($\text{p}\beta\text{CD}$) can co-encapsulate different anti-tuberculosis molecules. Interestingly, these $\text{p}\beta\text{CDs}$ alone (without any antibiotics) also have the capacity to inhibit bacterial infection by acting at different levels. In particular, we have demonstrated that $\text{p}\beta\text{CDs}$ can prevent the entry of *Mycobacterium tuberculosis* into macrophages, its preferred target cell, and that they also induce apoptosis in the latter, thereby affecting the replication of the bacterium in its host. The aim of my research is therefore to characterize in greater detail the effect of these beta-cyclodextrin polymers on the host. In parallel, I'm also studying the effect of bacterial infection on the dialogue between the infected host and the nanoparticle, all with a view to perhaps one day curing tuberculosis using a spray of antibiotic-loaded nanoparticles.

As far as my future is concerned, this thesis experience has only strengthened my desire to pursue a career in research. At the end of my thesis, I plan to pursue my career with a post-doctoral contract abroad. This will enable me to acquire new skills, expand my network and see how research is evolving around the world. As for the post-doctorate period, I'm not sure what's next, but who knows, maybe one day I'll come back to CIL and write a new part of the newsletter...

Julie Di Adamo

PhD student

University of Lille

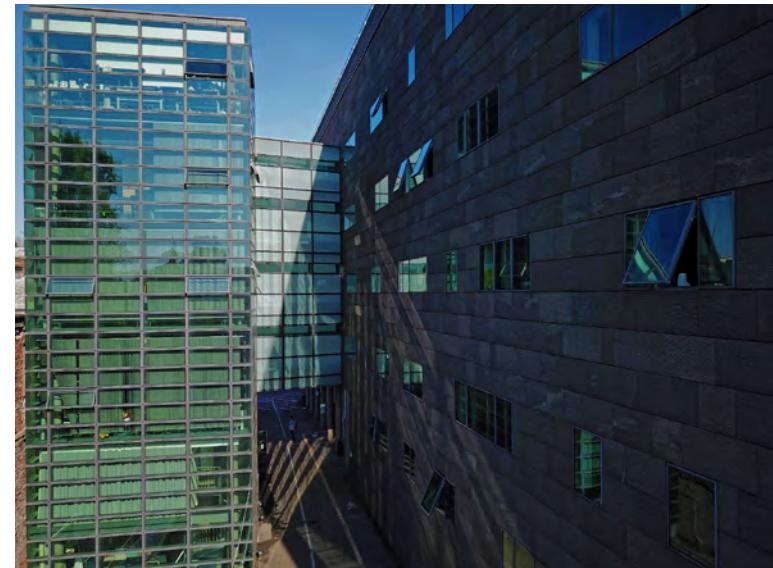
During my studies, I joined CPE Lyon, an engineering school specialising in chemistry and process engineering. At this school, I was

able to study chemistry in a general way and then I wanted to specialise in organic chemistry and biochemistry. To do this, I chose to do a gap year at Debiopharm, a Swiss pharmaceutical laboratory.

During my gap year, I joined a team of researchers to work on ADCs (Antibody-Drug Conjugates). My main job was to synthesise peptide linkers and then couple them to a payload (chelator or cytotoxic drug) so that they could be conjugated to an antibody. This enabled me to familiarise myself with peptide and protein chemistry and also to devise synthesis strategies to produce target molecules rapidly.

Having been trained in peptide chemistry with therapeutic aims really appealed to me and made me want to specialise in biochemistry. So I went to Scotland, to the University of Strathclyde in Glasgow, to specialise in Drug Discovery for my final year at school. This course enabled me to apply organic chemistry to biology.

My career path finally led me step by step towards research and I decided to do a PhD. I am currently a PhD student in Dr. Melnyk's team at the CIIL. The aim of my thesis, entitled 'A biomimetic approach to total protein synthesis', is to develop a method for synthesising proteins chemically more quickly and in higher yields using electrostatic assistance.


Portrait of one of our technicians

Nicolas Ampen-Guffroy
Technician
CNRS

I am originally from the Lille metropolitan area where I grew up, studied and acquired my professional experience. I have a BTS in

Mechanics and Industrial Automation, and began my career as a warehouse worker and adhesive label machine operator. I then worked for 19 years as a technician in a Japanese group company where I created, installed and trained in data traceability and identification solutions (thermal printers, software, barcode readers and automated systems). I also provided maintenance and trouble shooting of equipment in the workshop, on site and via Hotline.

Quentin Vanpeene
PhD student
University of Lille

My name is Quentin Vanpeene, a first-year PhD student in the MoHMI team (Dr. A. Grassart) and a graduate of the interdisciplinary Life Sciences and Technologies (LST) master's program at the University of Lille, where I discovered the fascinating world of organs-on-chips and its challenges, particularly regarding microfluidics. Coming from a medical background that I stopped in the 4th year, I switched to biology 3 years ago by joining the 3rd year of the Cell Biology and Physiology Bachelor's degree at the University of Picardie Jules Verne in Amiens before entering the LST master's program.

My research project, called SensoGutChip, aims to study the dynamics of the integrity of a human biomimetic intestinal epithelium during infection by the enteroinvasive bacterium *Shigella*. To achieve this, I will develop an intestine-on-chip model based on human induced pluripotent cells (hiPSC) and a microelectrode array (MEA) to measure the transepithelial electrical resistance (TEER), which reflects the effective permeability of this barrier. My work will be carried out jointly between the MoHMI team at CIIL and the Nanostructures, nanoComponents and Molecules (NCM) team at IEMN, as part of an 80 prime funding from MITI CNRS.

In conclusion, I hope to contribute at my level to the development of an organ-on-chip model that can be adapted to different organs within the MOSAIC research program, led by Dr. A. Grassart.

I joined the CNRS through an external competition and have held the position of Technician in Building Development, Maintenance and Operation since January 2021. I am part of the Technical and Logistics department of the IBL with A. Denhez (manager) and M. Messemagne (technician), assisted by a multi-technical service provider technician. My mission is to direct, coordinate and plan, on the technical, administrative, budgetary and regulatory levels, partial building development and renovation operations and maintenance of facilities.

Life at the CIIL

Quality of Life and Working Conditions (QLWC)

Quality of Life and Working Conditions (QLWC) is an important issue for organisations, companies... including research

units. QLWC is a concept that encompasses all the factors that influence the well-being and effectiveness of employees in their working environment. In a research unit, where researchers, technicians and administrative staff work side by side, it is essential to ensure a working environment that is conducive to creativity, collaboration and personal fulfilment.

In France, QLWC is regulated by a number of laws and regulations. Law 2016-1088 of 8 August 2016 on work, modernising social dialogue and securing career paths reinforces the importance of QLWC at work. It requires employers to take working conditions into account in the prevention of occupational risks.

In addition, the Labour law stipulates that the employer must ensure the health and safety of workers, which includes taking measures to improve working conditions. Industry and collective agreements may also contain specific provisions on QLWC, adapted to the particularities of the sectors of activity.

Public enterprises and establishments, including UMRs, are required to carry out occupational risk assessments, prepare a single risk assessment document and implement corrective measures. In addition, the law requires employers to consult staff representatives on QLWC issues, thereby promoting constructive social dialogue.

There are a number of ways to improve QLWC in our research unit:

1. Workspace design: Workspace design should encourage collaboration while respecting individual needs. Offices, laboratories and common areas need to be adapted to the needs of researchers and staff. This includes ergonomic furniture, well-equipped meeting rooms and relaxation areas.

2. Flexibility and work-life balance: The introduction of flexible working arrangements, such as teleworking or adaptable working hours, allows members of the Unit to better reconcile their professional and personal commitments, which can reduce stress and improve job satisfaction.

3. Training and professional development: Providing opportunities for continuous training and professional development is essential to keep staff engaged. This can include workshops, seminars or mentoring programs.

4. Social dialogue and employee involvement: Encouraging an open dialogue between management and employees helps to identify

QLWC-related problems and to develop solutions together. Satisfaction surveys and working groups can be set up to gather employees' opinions.

5. Stress and psychosocial risk management: The implementation of stress prevention programs, including stress management workshops and awareness sessions, is essential. Tools for identifying and managing psychosocial risks need to be put in place.

The quality of life and working conditions in a research unit is an issue that requires particular attention. By complying with the legal framework and implementing appropriate improvements, Research Units can create a working environment that is conducive to research, innovation and the well-being of their staff. Such an approach will not only promote team satisfaction but also the overall performance of the unit. With this in mind, a QLWC initiative will be undertaken at CIIL, with the creation of a working group in which each of you is invited to participate.

A look back on the first PhD Student's Day at CIIL - October 24, 2024 -

The day began with an introduction led by Inès Leleu and Jean Dubuisson, followed by presentations by Sabine Blin, Claire Montpellier, Geoffrey Bercker, Judicaël Potiron, and Alexis Denhez. These presentations covered the management of the unit, the structure of the building, IT management, and safety and hygiene regulations. Participants then listened to inspiring testimonials. Current doctoral students such as A. Baille, E. Louvet, A. Grandé, and C. Sobiesky shared their experiences, while D. Osmani, Y. Dagan, L. Delval, L. Gurgoglione, and J. Fine captivated the audience with presentations of their research projects. CIIL scientists who had completed their doctoral degrees, including V. Sencio, R. Mascau, C. Wichtlacz, and P. De Nadai, discussed their postdoctoral journeys. Finally, permanent researchers S. Bontemps-Gallo, M. Pichavant, and S. Pied shared their vision of the profession and their career paths. These talks provided valuable insights into the challenges and opportunities of scientific research.

Moments of Exchange and Discovery

The afternoon began with a speed-meeting session among doctoral students, fostering stronger connections and group cohesion. Participants then toured several strategic platforms on the campus, such as BiCel, the flow cytometry platform, the Plehta animal facility, and the Ariadne screening platform. The day concluded

with a dynamic presentation by Layal Massara on behalf of the campus young researchers' association (YPL), followed by a friendly afterwork event co-organized with IPL and YPL.

Visit of the HCERES committee

A Collective Success Through Unwavering Commitment

This day would not have been such a success without the involvement of many contributors. A heartfelt thank you to Inès Leleu for spearheading this wonderful initiative, and to Valentin Sencio and Arnaud Machelart for their essential contributions to the organization. Thanks also to the administrative team, the unit, and all the speakers for their valuable participation. Finally, congratulations to the doctoral students for their enthusiasm and active involvement throughout the day.

A Unifying Moment to Be Renewed

Unanimous feedback from participants confirms that this first edition of the CIIL Doctoral Students' Day was a success. It strengthened bonds within the doctoral community while showcasing the resources available on campus. This experience should be repeated to continue inspiring and supporting the researchers of tomorrow!

From 19 to 21 November 2024, the CIIL welcomed the HCERES visiting Committee and the representatives of the institutions to which our Center belongs. Chaired by Pr Francesca Chiodi (Karolinska Institutet, Stockholm, Sweden), the committee was made up of Nabila Seddiki (CEA, Université Paris Saclay, Fontenay aux Roses, France), Matteo Bonazzi (Institut de Recherche en Infectiologie, Montpellier, France), Maximiliano Gutierrez (The Francis Crick Institute, London, United Kingdom), Pierre-Emmanuel Milhiet (Centre de Biologie Structurale, Montpellier, France), Jean-François Hernandez (Institut des Biomolécules Max Mousseron, Montpellier, France), Stéphane Emiliani (Institut Cochin, Paris, France) and Giovanna Barba-Spaeth (Institut Pasteur, Paris, France).

After a presentation of the Unit and its project by Jean Dubuisson and Frank Lafont, the 15 team leaders were given the opportunity to discuss their results and project in front of a committee that listened benevolently and in a serene atmosphere conducive to scientific exchanges, which were continued at a meeting to discuss the teams' posters on the last day. Category meetings were also an ideal opportunity for staff to have their say with committee members. The CIIL would like to thank the representatives of the Université de Lille, the CNRS, Inserm, the CHU de Lille, the Institut Pasteur de Lille and the UFR3S for their support during the meeting organized with the Committee.

We have just received the report of this evaluation which is very positive and it will help us to prepare the transition to 2026

© Alexandre Delobel

News in brief ...

Award ceremony for the CNRS collective crystal medal

On December 10, 2024, Adeline Danneels and Audrey Tarricone were honored at the CNRS Hauts-de-France Talents 2024 ceremony for the collective crystal they received as part of their involvement in the Virocrib consortium.

A high-level Women's café!

Researchers, Engineers, Technicians And Sportswomen and high-level sport, same challenges? Emma and Meijda, rugby players in Élite 1 (France's top league) for Stade Villeneuvois Lille Métropole and speakers for LJA Sport - Ladies are just amazing, set out to answer this question in a fascinating 1-hour talk. Facing the participants of the 3rd CIIL Women's café, they shared their experience, showing that excellence and performance can be achieved by women, but above all as a team. Supplément d'âme, code "Poubelle", resource person, types of leadership: these were all notions that strongly echoed the day-to-day reality of the research teams.

CIIL General Assembly

As at the beginning of each year, the members of the CIIL gathered for a general assembly to discuss the events that marked the past year. This meeting then continued with a moment of conviviality around the traditional galette.

Contributors to this issue include :

- Nicolas Ampen-Guffroy	- Arnaud Machelart
- Gabriela Certad	- Claire Montpellier
- Catherine Daniel	- Amine Pochet
- Julie Di Adamo	- Valentin Sencio
- Nausicaa Gantois	- Karin Seron
- Frank Lafont	- Quentin Vanpeene
- Inès Leleu	- Céline Wichlacz

Director and supervisor	:	Jean DUBUSSON
Editorial coordination	:	Sabine BLIN
Design	:	Sophana UNG
Proofreading	:	Orane HUCHEZ

Center for Infection & Immunity of Lille

CIIL - CNRS UMR9017 - INSERM U1019
1, rue du Professeur Calmette - 59000 Lille

<https://www.ciil.fr>